Risk factors for horse falls in the cross-country phase of British Eventing competitions: A comprehensive data analysis

Introduction

- Myerscough College - National Diploma
- Myerscough/UCLan – BSc(Hons) Equine Science (Physiology)
- UCLan (Myerscough funded) – PhD by Research

- Worked, groomed and ridden in eventing in UK

- Research presented at a variety of equine and sports conferences in the UK, Ireland, Denmark, Madrid…. and now Switzerland!

Previous Research

- Level of Event
- Horse Age
- Horse Sex
- Rider Sex
- Position Before Cross-Country
- Month of Event
- Year of Event
- Event

- Novice
- Intermediate
- Advanced

N = 2002

National level one-day events only. Format:

Dressage – Show-jumping – Cross-country
Although effect is small, strong support, large data set, 95% confidence intervals (dashed lines) are narrow.
Physiology or Psychology?
PhD Research

Why are riders in leading positions at an increased risk of a horse fall?

Mass data analysis to confirm/deny preliminary results
- Last 10 years of data
- N=850,000

What are the key risk factors for horse falls?

How do the variables interact with each other?

Methods from racing risk analysis (30, 60, 90 days)
PhD Research
Mass Data Processing

Data processing
- Data is live on competition results but not on fall results, marriage changes name
- Some people use ‘0’ some people use blanks (which is missing data, and which is ‘0 faults’?)
- How to get the system to recognise which horse fell if the rider is on several horses during that day (horse name not included on fall report data)
- Human error on fall report forms, misspelt names etc
- Huge data set some computers/software programs not able to process it

Creating new variables
- How many times has the horse/rider competed in last 30,60,90 days?
- How many times has the horse/rider had a HF in career, 6 months, 1 year?
- How many times has the horse/rider had a UR in career, 6 months, 1 year?

Using a variety of statistical software packages, mainly ‘R’ and Microsoft Access for data processing, and STATA for analysis
PhD Research

Mass Data Analysis

- Univariate analysis was completed on each individual factor against horse fall
- Almost everything came up as ‘significant’ due to large data set
- Variables sorted in to numerical order using the highest odds ratio and lowest significance combined

- Variables are then input in to a multivariable model in this order
- When a variable comes up as insignificant in the MV model it is removed
- This process narrows the significant factors down greatly (from 34 to 13!)
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>VARIABLE EXPLANATION</th>
<th>FINDING</th>
<th>RISK</th>
<th>RISK EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>My_sum_horse_falls</td>
<td>How many horse falls has the horse had in its career</td>
<td>For every horse fall</td>
<td>increases</td>
<td>If horse has had several horse falls in career it is likely it will have more</td>
</tr>
<tr>
<td>My_horse_starts_30_60</td>
<td>How many times has the horse competed in the last 30-60 days</td>
<td>For every competition</td>
<td>increases</td>
<td>The more the horse has competed in 30-60 days the more it is at risk of a HF</td>
</tr>
<tr>
<td>Ridersex</td>
<td>Gender of rider</td>
<td>Male riders</td>
<td>Increases</td>
<td>Male riders are more likely to have HFs</td>
</tr>
<tr>
<td>My_horse_starts_60_90</td>
<td>How many times has the horse competed in last 60-90 days</td>
<td>For every competition</td>
<td>Increases</td>
<td>The more the horse has competed in last 60-90 days the more it is at risk</td>
</tr>
<tr>
<td>My_horse_starts_0_30</td>
<td>How many times has the horse competed in the last 30 days</td>
<td>For every competition</td>
<td>Increases</td>
<td>The more the horse has competed in last 30 days the more it is at risk</td>
</tr>
<tr>
<td>Horsegrade</td>
<td>Horses grade</td>
<td>Higher grade</td>
<td>Increases</td>
<td>Horses of a higher grade are at an increased risk</td>
</tr>
<tr>
<td>Riderage</td>
<td>Age of the rider</td>
<td>For every additional year of age</td>
<td>Decreases</td>
<td>Young riders are more at risk than older riders</td>
</tr>
<tr>
<td>Dressagepen</td>
<td>Dressage penalties</td>
<td>For every additional penalty</td>
<td>Increases</td>
<td>A poor dressage test score predicts higher risk of a horse fall</td>
</tr>
<tr>
<td>Horseage</td>
<td>Age of the horse</td>
<td>For every additional year of age</td>
<td>Increases</td>
<td>Older horses are at a higher risk of HFs</td>
</tr>
<tr>
<td>Sjpen</td>
<td>Show jumping penalties</td>
<td>For every additional penalty</td>
<td>Increases</td>
<td>A poor show jumping round presents increased risk of a HF</td>
</tr>
<tr>
<td>My_days_since_last_start_jockey</td>
<td>How many days has it been since the rider last competed</td>
<td>For every additional day of rest</td>
<td>Decreases</td>
<td>More days of rest for the rider reduce the risk of a horse fall</td>
</tr>
<tr>
<td>My_jockey_starts_30_60</td>
<td>How many times has the rider competed in the last 30-60 days</td>
<td>varied</td>
<td>varied</td>
<td>Decreased risk initially, but at 5 or more it changes to increased risk</td>
</tr>
</tbody>
</table>
PhD Research

Why are riders in leading positions at an increased risk of a horse fall?

In-field data collection
- Follow a group of riders and their horses through the eventing season
- Monitor heart rate and heart rate variability of the horse and rider during cross-country
- Psychoanalysis of rider before and after cross-country
- GPS mapping of course
- GPS tracking of horse and rider during cross-country rounds (location, speed, altitude)

Are there changes in the horse/rider physiological, psychological or GPS data depending on what position they are in (or any other factors!)?
PhD Research
Why are riders in leading positions at an increased risk of a horse fall?

Psychological profiling of riders
- Personality profiling
- Sensation seeking scale

Is there a trend in personality profiles of riders as there is in participants of other high risk sports?

How do riders score on the sensation seeking scale? Is there a trend?
PhD Research
In-field data collection
PhD Research
In-field data collection
PhD Research
In-field data collection

<table>
<thead>
<tr>
<th></th>
<th>Horse</th>
<th>Rider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max HR</td>
<td>222 bpm</td>
<td>198 bpm</td>
</tr>
<tr>
<td>Min HR</td>
<td>42 bpm</td>
<td>64 bpm</td>
</tr>
<tr>
<td>Average HR</td>
<td>160 bpm</td>
<td>164 bpm</td>
</tr>
<tr>
<td>Max Speed</td>
<td>42.2 km/h (26.2mph)</td>
<td>164 bpm</td>
</tr>
<tr>
<td>Average Speed</td>
<td>17.6 km/h (11 mph)</td>
<td></td>
</tr>
</tbody>
</table>
PhD Research
In-field data collection

Notable events whilst testing
- 3 rider falls
- 1 horse fall
- Several ‘1st attempt at level’
- Regional final competitions
- Male and female riders, variety of age and experience
- BE90 to Intermediate level

Observations
- Who is present/spectating? Parents, spouse etc.
PhD Research
Current phase of research

- Analysis of psychological data from competitions
- Analysis of HR/HRV data from competitions
- Psychoanalysis/personality profiling of riders

Multifactor analysis of quantitative data

PhD end date 31st December 2018